ds.boxPlot {dsBaseClient} | R Documentation |
Draw boxplot with data on the study servers (data frames or numeric vectors) with the option of grouping using categorical variables on the dataset (only for data frames)
ds.boxPlot(
x,
variables = NULL,
group = NULL,
group2 = NULL,
xlabel = "x axis",
ylabel = "y axis",
type = "pooled",
datasources = NULL
)
x |
|
variables |
|
group |
|
group2 |
|
xlabel |
|
ylabel |
|
type |
|
datasources |
a list of |
ggplot
object
## Not run:
## Version 6, for version 5 see the Wiki
### Please ensure you have a training Virtual Machine running,
or that you have a live connection to a server.
# Connecting to the Opal servers
require('DSI')
require('DSOpal')
require('dsBaseClient')
builder <- DSI::newDSLoginBuilder()
builder$append(server = "study1",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "CNSIM.CNSIM1", driver = "OpalDriver")
builder$append(server = "study2",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "CNSIM.CNSIM2", driver = "OpalDriver")
builder$append(server = "study3",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "CNSIM.CNSIM3", driver = "OpalDriver")
logindata <- builder$build()
connections <- DSI::datashield.login(logins = logindata, assign = TRUE,
symbol = "D")
## Create a boxplot of one variable
ds.boxPlot("D", "LAB_HDL", datasources = connections)
## Create a boxplot that is split by study:
ds.boxPlot("D", "LAB_HDL", type= "split", datasources = connections)
## Create a boxplot of two variables variable
ds.boxPlot("D", c("LAB_HDL", "LAB_TRIG", type="combine",
datasources = connections)
# only one plot is created (of the aggregated results of all servers)
## Create a boxplot of two variables, which are split by a factor
ds.boxPlot("D", c("LAB_HDL", "LAB_TRIG"), group = "GENDER",
datasources = connections)
## Create a boxplot with x- and y-axis labels
ds.boxPlot("D", c("LAB_HDL", "LAB_TRIG"), group = "GENDER",
xlabel = "Variable", ylabel = "Measurement", datasources = connections)
## Improve the presentation of ds.boxplot output using ggplot:
### User must save the output, which is in a ggplot format already:
a <- ds.boxPlot("D", c("LAB_HDL", "LAB_TRIG"), group = "GENDER",
xlabel = "Variable", ylabel = "Measurement", datasources = connections)
### Then customise output "a" using ggplot tools:
a + ggplot2::scale_fill_discrete(name = "Gender", labels = c("Male", "Female"))
### Or use an alternative way, to maintain the aesthetics:
a + ggplot2::scale_fill_brewer(name = "Gender", labels = c("Male", "Female"))
# Clear the Datashield R sessions and logout
datashield.logout(connections)
## End(Not run)